0 Ja n 20 06 Cayley submanifolds of Calabi - Yau 4 - folds

نویسندگان

  • Ana Pereira do Vale
  • Jim Eells
چکیده

Our main results are: (1) The complex and Lagrangian points of a non-complex and nonLagrangian 2n-dimensional submanifold F :M →N , immersed with parallel mean curvature and with equal Kähler angles into a Kähler-Einstein manifold (N, J, g) of complex dimension 2n, are zeros of finite order of sin θ and cos θ respectively, where θ is the common J-Kähler angle. (2) If M is a Cayley submanifold of a Calabi-Yau (CY) manifold N of complex dimension 4, then ∧2 + NM is naturally isomorphic to ∧2 + TM . (3) If N is Ricci-flat (not necessarily CY) and M is a Cayley submanifold, then p1( ∧2 + NM) = p1( ∧2 + TM) still holds, but p1( ∧2 − NM) − p1( ∧2 − TM) may describe a residue on the J-complex points, in the sense of Harvey and Lawson. We describe this residue by a PDE on a natural morphism Φ : TM → NM , Φ(X) = (JX), with singularities at the complex points. We give an explicit formula of this residue in a particular case. When (N, I, J,K, g) is a hyper-Kähler manifold and M is an I-complex closed 4-submanifold, the first Weyl curvature invariant of M may be described as a residue on the J-Kähler angle at the J-Lagrangian points by a Lelong-Poincaré type formula. We study the almost complex structure Jω on M induced by F .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersymmetric Cycles in Exceptional Holonomy Manifolds and Calabi-Yau 4-Folds

We derive in the SCFT and low energy effective action frameworks the necessary and sufficient conditions for supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4-folds. We show that the Cayley cycles in Spin(7) holonomy eight-manifolds and the associative and coassociative cycles in G2 holonomy seven-manifolds preserve half of the space-time supersymmetry. We find that while...

متن کامل

ar X iv : m at h / 01 11 11 1 v 2 [ m at h . D G ] 2 5 Ju n 20 02 Lectures on special Lagrangian geometry

Calabi–Yau m-folds (M,J, ω,Ω) are compact complex manifolds (M,J) of complex dimension m, equipped with a Ricci-flat Kähler metric g with Kähler form ω, and a holomorphic (m, 0)-form Ω of constant length |Ω| = 2. Using Algebraic Geometry and Yau’s solution of the Calabi Conjecture, one can construct them in huge numbers. String Theorists (a species of theoretical physicist) are very interested ...

متن کامل

2 9 Se p 20 03 Lectures on special Lagrangian geometry

Calabi–Yau m-folds (M,J, ω,Ω) are compact complex manifolds (M,J) of complex dimension m, equipped with a Ricci-flat Kähler metric g with Kähler form ω, and a holomorphic (m, 0)-form Ω of constant length |Ω| = 2. Using Algebraic Geometry and Yau’s solution of the Calabi Conjecture, one can construct them in huge numbers. String Theorists (a species of theoretical physicist) are very interested ...

متن کامل

ov 2 00 1 Lectures on special Lagrangian geometry

Calabi–Yau m-folds (M,J, ω,Ω) are compact complex manifolds (M,J) of complex dimension m, equipped with a Ricci-flat Kähler metric g with Kähler form ω, and a holomorphic (m, 0)-form Ω of constant length |Ω| = 2. Using Algebraic Geometry and Yau’s solution of the Calabi Conjecture, one can construct them in huge numbers. String Theorists (a species of theoretical physicist) are very interested ...

متن کامل

. A G ] 3 1 Ja n 20 06 MODULARITY OF CALABI - YAU VARIETIES

In this paper we discuss recent progress on the modularity of Calabi-Yau varieties. We focus mostly on the case of surfaces and threefolds. We will also discuss some progress on the structure of the L-function in connection with mirror symmetry. Finally, we address some questions and open problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006